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An analysis is presented of the effects of variable properties on the thermo-fluid-dynamic 
field in natural convection along a vertical flat plate of nonzero thickness whose outer 
surface is at constant temperature. Viscosity and thermal conductivity are assumed to 
depend on temperature in a polynomial form. The method of solution of the problem, 
which is not governed by similarity solutions because of the nonzero thickness of the 
plate, is based on two expansions coupled through an application of Pad6-approximant 
techniques. The method is applied to natural convection of air over several temperature 
ranges. The influence on the thermo-fluid-dynamic field of the law of variation of viscosity 
and thermal conductivity is discussed. 
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I n t r o d u c t i o n  

Analysis of natural convection problems is usually performed 
by applying the Boussinesq approximation, which consists of 
considering all the properties constant except density when it 
appears in the buoyancy term of the equation of motion. Some 
empirical methods, such as the reference-temperature method 
and the property-ratio method (see, e.g., Kays 1) have been 
proposed to evaluate the effects of variable properties on the 
thermo-fluid-dynamic field. 

In the reference-temperature method, the problem is still 
solved within the Boussinesq approximation but the properties 
are calculated at a reference temperature T,= Tw--r(Tw--Too), 
in which r is an empirical coefficient that is different for each 
property. In the property-ratio method, the variable-property 
results are obtained by multiplying the corresponding constant- 
property results by a factor of the form Il[ct~(Tw)/cti(Too)]"', 
where ct 1 =/~, c% = 2, ct 3 = p and the exponents n~ are determined 
empirically. 

Sparrow and Gregg 2 used the first method and found the 
value of 0.38 for r convenient for calculating the Nusselt number 
for several classes of gases. Minkowycz and Sparrow 3 used the 
value of 0.46 for steam. Fujii et al. 4 suggested the value of 0.25 
for liquids. 

Recently, the problem of variable-property effects has been 
studied for heat transfer at walls of zero thickness for the case 
of small temperature differences. In particular, Carey and 
Mollendorf 5 presented a first-order perturbation analysis for 
liquids, in which they assumed a linear dependence of viscosity 
on temperature. Gray and Giorgini 6 analyzed the limits of 
applicability of the Boussinesq approximation. 

Merker and Mey, 7 studying natural convection in a shallow 
cavity, found that the reference temperature can be assumed 
to be the arithmetic mean of the highest and lowest temperature, 
if the difference of these temperatures is on the order of 30 K 
or less. Variable-property effects in internal flows were studied 
by Herwig s (in circular pipes) and by Herwig and Klemp 9 (in 
annular pipes) by linear perturbation analysis. 

In this study we addressed the problem of variable-property 
effects in free convection along a vertical fiat plate without 
limitations on the difference between the wall and outer 
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temperature, while also taking into account the influence of the 
thickness of the plate. 

A n a l y s i s  o f  t h e  p r o b l e m  

The steady two-dimensional (2-D) flow resulting from laminar 
natural convection along a side of a vertical flat plate is 
governed by the boundary layer equations, in which the 
buoyancy term g(poo - p )  appearing in the equation of motion 
is usually written as g r i p ( T -  T~), where ri is the coefficient of 
thermal expansion and, for a perfect gas, is equal to 1/T~. 

Hence the dimensionless boundary layer equations governing 
the problem are 

(pU)x + (pv), =o (1) 

p(uu x + vuy) = (#uy)y + p8 (2) 

p(u~x + v~y) = (2~ , ) ,  (3) 
Pr 

where 9 = ( T - T ~ o ) / ( T  b -  Too) and Pr is the Prandtl number. 
The reference frame is illustrated in Figure 1, where b denotes 

the thickness of the plate, which is insulated on the edges, and 
a temperature T b is maintained on the side away from the fluid. 

The reference quantities a r e :  L=v~3/g 1/3 for x', L/d TM for 
y', poo for p, /~® for /t, 20o for 2, and v~d ~:4 for the stream 
function ~(pu = ~yp~, pv = ~=Po~), where d = ri(T b -  Too). 

Equations 1-3 are usually solved using the Boussinesq 
approximation. It is possible to take into account the variable- 
property effects by means of the nondimensional Stewartson- 
Dorodnitzin transformation: 

= x tl = p dy (4) 

assuming that the viscosity and thermal conductivity coefficients 
are proportional to absolute temperature, so tha t / tp  = 2p = 1. 

This hypothesis concerning the dependence on temperature 
of the viscosity and thermal conductivity coefficients cannot be 
adequate to describe the thermo-fluid-dynamic field if the 
fluid-side plate temperature is very different from that of the 
outer side. Therefore we assume the following dependence of 
# and 2 on absolute temperature T 

I ~= ~ ~ T  i (5) 
i = 1  
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Figure 1 Thermal model of a plate 

a= f: fliTi 
i=l 

(f-5) 

so that, in dimensionless form, the products pp and Ip (p = l/T) 
are expressed by means of polynomials in terms of 9: 

n-- 1 

,up = 1 + C a,# (7) 
i=l 

n-1 

Rp=l+ 1 b,@ 
i=l 

In particular, for n = 2 we have 

pp=lfa,9 

Ap=l+b,S 

where a, =a,(Tb- T,)/(a, +a2Tm) and 

b, =Bz(Tb- 7-J/(@, +c~Tm) 

(8) 

(7a) 

(8a) 

Then Equations 1, 3, 7, and 8 give 

u,+ v,=o (9) 

(10) 

(11) 

where V= pu + uq,. 
The boundary conditions associated with Equations 9-l 1 are 

u(x,0)=u(x,0)=u(x, co)=9(x, co)=0 (12) 

u(0, rl)=9(0, Ill=0 (13) 

The boundary condition of Equation 13 usually involves 
assigning the temperature or the heat flux at the solid-fluid 
interface (y = 0). For a plate of nonzero thickness, we must 
solve the coupled thermal fields in both the solid and the fluid. 
The coupling conditions require that the temperature and the 
heat flux be continuous at the interface. 

The temperature T,, in the solid, neglecting the wall’s 
longitudinal conduction, is 

T _T (x,)_cTb-Tv(x')lY' 
so- w 

b 

where T,(x’)= T(x’, 0) is the unknown temperature at the 
interface. 

The heat flux continuity condition, using Equation 8, may 
be written in dimensionless form as 

(14) 

Notation 

al Coefficient in Equation 7 
b Plate thickness 
bl Coefficient in Equation 8 

c I. Friction coefficient, ~Jp,(v,/x’)~ 
B(Tb- T,) 
Functions occurring in the asymptotic expansion of 
IL 

T Temperature 
Tb Temperature at outside surface of the plate 
u, ” Velocity components 
x’, Y’ Dimensional Cartesian coordinates, as indicated in 

Figure 1 
x5 Y Dimensionless Cartesian coordinates 

z Similarity variable for the asymptotic expansion, 
V/X”4 

9 

9i 

Grl 

Gr, 
hi 

K 
1 
L 
m 

ml 
Nux 

P 
Pr 
4w 
s 

Acceleration due to gravity 
Functions occurring in the initial expansion of $ 
Grashof number referred to the length of the plate, 
gd13/vZ 
Grashof number referred to the abscissa x’, gdY3/vZ 
Functions occurring in the initial expansion of 9 
Coefficient in the coupling parameter, ,$,l/&,b 
Length of the plate 
Reference length, v2’3/g’/3 
Expansion parameter in asymptomatic solution, 
Px 

- l/4 

Expansion parameter in initial solution, x1/5/p4/5 
Nusselt number referred to the abscissa x’, 
x’q,(x’)/UT,--T,) 
Coupling parameter, d’/4bA,/L&, 
Prandtl number 
Wall heat flux 
Similarity variable for the initial expansion, q/( px)“’ 

Greek 

B 
9 
9i 

symbols 
Volume thermal expansion coeficient 
Dimensionless temperature (T - T,)/( Tb - T,) 
Functions occurring in the asymptotic expansion of 
9 
Thermal conductivity 
Absolute viscosity 
Kinematic viscosity 
Fluid density 
Stream function 
New dimensionless abscissca, x 
New dimensionless ordinate, j’, p dy 

Subscripts 
so Solid 
W Solid-fluid interface conditions 
co Ambient conditions 
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where 

dl/4b2~ 
p -  (15) 

L2~o 
and 2~o is the (constant) solid thermal conductivity. Equation 
14 represents the last boundary condition associated with 
Equations 9-1 1. 

S o l u t i o n  m e t h o d  

Owing to the nonzero thickness of the plate, the problem does 
not allow use of similarity solutions; in fact the solution has a 
different character for low and high values of x. Therefore 
Equations 9-14 are solved by means of two expansions, 
reflecting the fact that the solution tends toward the isothermal 
one for x--, ~ and toward the isoflux one for x ~ 0. 

In order to analyze the problem for high values of x, we 
assume (as a convenience) that m=p/x 1/4 and z=rl/x TM are 
independent variables. It is not possible to expand the unknowns 
in a MacLaurin series with respect to m (m--* 0 corresponds to 
x--* ~ )  because, although no problem is encountered for the 
first four coefficients, the equation that should determine the 
fifth one has no solution. Moreover, since m diverges for x 
vanishing, this series cannot satisfy any initial conditions. 
Therefore the asymptotic expansion must include nonintegral 
powers and logarithmic terms: In this way it is possible to 
satisfy conditions at a suitable point x0 >0.  Nevertheless, as 
such terms do not appear below order 4,~° they can be neglected 
in the procedure proposed. 

In order to analyze the problem for small values of x 
we (again for convenience) assume that ma=xl/5/p 4/5 and 
s = rl/(px) ~/5 are independent variables. In this case it is possible 
to expand the unknowns in a MacLaurin series with respect 
to ml (m~ = 0  for x=0) .  This expansion, the leading term of 
which represents the isoflux condition, has a finite radius of 
convergence and does not allow us to describe the entire 
thermo-fluid-dynamic field. The expansion does provide, if 
necessary, the initial conditions at Xo for the asymptotic 
expansion. However, we show that it is possible, using Pad6 
approximant techniques, not only to calculate the radius of 
convergence of the initial expansion, but also to obtain a 
representation valid over the whole field. 

Every term of the two expansions is obtained by solving 
numerically a system of ordinary differential equations obtained 
in the usual way from Equations 9-14, applying Cauchy's rule 
for multiplication of power series. In particular, we assume (for 
the sake of simplicity) Equations 7a and 8a (n = 2) for #p and 
2p. The method proposed works well also if the number of 
equations is large. Considering 11 and 4 terms for the initial 
and asymptotic expansions, respectively, is sufficient to obtain 
accurate results. 

Expansion for h igh  x 

To obtain the asymptotic expansion we introduce the same 
similarity variable used for the isothermal problem, z = q/x ~/4. 
We let ~k = x3mf(x, z) and 

P m= (16) X1/4 

If we expand the functions f and ,9 in a MacLaurin series, 
writing 

f =  ~ mfi(z) and `9= ~ mi`gi(z) (17) 
i = 0  i = 0  
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from Equations 7a, 8a, 10, 11, and 14, we find at the leading 
order the following system: 

+algo)f~, +(ax9,o+43 "~ ,, 1 (1 f o ) f  o - }  f'o 2 + 9o =0 (lSa) 
\ 

(1 +ba9o)`9'~+brg'o 2 +~ Prf09 ~ = 0  (18b) 

fo(O) = f ~ ( O ) = f  ~(oo) = 0 (18c) 

0o(0)=1 and 0o(OO)=0 (18d) 

(representing the isothermal problem) and at the ith order 

(1 + ax`9o)f[' + ̀ 9i + a, (gift '+ `9'of'i' + ̀ 9;f'~) 

- f o f ~ +  4 fo f[+f i f '~  +~(f~f'o-f~f'~) =S, (19a) 

(1 + b 1`90)̀ 9'i' + b1(`9i9'o + 29'i`9;) + 34 Pr ( fo`9'~ +f~`9'o) 

i 
+ -  Pr(9,f~-f~`9~) = T~ (19b) 

4 

f,(O) = f ; ( O ) = f ; ( o o ) = 0  (19c) 

9i(0) =`9;_ a (0) + b,A~_ x; 9 , ( ~ ) = 0  (19d) 

where 
i 

a,= Z `gj(O)9;_j(O) 
j = O  

- a , ( g j f ' ; ' _ j  + 9̀~f','_j)] 

T~= ~ -ba(gj`9;'_j+gjs;_j)- Pr(`gjf;_j+ fj`9;_j)- Prfj,9;_j 
j = I L  

Equations 19 may be solved numerically without difficulty for 
i =  1, 2, and 3; for i=4 ,  Equations 19a and b, with St= T~=0 
and with the initial conditions f4(0)=f~(0)=t94(0)=0; 
f~(O)=Cf~(O); `gk(0)=-C9~(0), where C is a free constant, 
allows a solution by f4=C(3fo-zf'o); 94=-Cz`9'o, which 
satisfies the conditions at infinity f~ , (~  )=  `94(~)= 0. Therefore 
f4 and 94 represent an eigensolution of Equations 19. 

To take into account terms of 0(m4), we must modify the 
form of Equations 17 to include the eigensolutions and give 
initial conditions at x = x o > 0. However, we need to consider 
only the first four terms in Equation 17, because the Pad& 
approximant techniques permit us to obtain a representation 
valid in the entire thermo-fluid-dynamic field. Thus the asymp- 
totic solution will check only the accuracy of the Pad6 
representation at high values of x. 

Expansion for low x 
Let s=q/(px) 1/5, O= x4/S g(x, s)/p 1/5, 9= xl/Sh(x, s)/p 4/5, and 

Xt/5 
ml - p4/5 (20) 

We can expand the functions 9 and h in a MacLaurin series 
with respect to ml, to get 

g= ~ m~g,(s) and h=  ~ m~h,(s) (21) 
i = 0  i = 0  

In this way, if we assume that g ~ ( ~ ) = h i ( ~ ) = 0 ,  the initial 
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conditions of Equation 13 are satisifed as well. If Xo is a 
point of convergence of Equation 21, we can obtain in this 
point the initial conditions for a correct expansion in terms of 
m (asymptotic expansion). 

Equations 7a, 8a, 10, 11, and 14 give, as in the previous case, 
the equations to be used to calculate the functions g~(s) and 
h~(s) for any i. We can calculate the radius of convergence of 
Equations 21 by means of Padr-approximant techniques, after 
determining numerically the functions g~(s) and h~(s); at the 
same time, we shall obtain a new representation of the functions 
g and h. The idea of Padb summation is to replace a power 
series ~ a,t" by a sequence of rational functions of the form 

N 

A,t" 

p~( t )=  "=° 
M 

B.t" 
n = o  

where Bo may be set equal to 1 without loss of generality. The 
remaining M + N + 1 coefficients, A, and B,, may be chosen so 
that the first M + N + 1 terms in the Taylor series expansion of 
P~(t) match the first M + N +  1 terms of the power series 
~ a t" The resulting rational function P~(t) is called a Pad6 

~ = 0  ~ • 

approximant of functions P~ for which M = N is called the 
diagonal sequence. 

In this way we can obtain rapid convergence by using only 
a few terms of the original Taylor series. Above all, the utility 
of Pad~ approximants lies in the fact that they also work well 
when the Taylor series does not converge. 

The improvement with respect to the MacLaurin expansion 
obtained with Pad6 approximants is remarkable; in fact, the 
latter even matches the expansion for x ~  oo very well, whereas 
the former diverges there. We demonstrate these effects and 
present all our results using Pad6 techniques. 

Results and discussion 

We will apply the preceding analysis to the case of air (Pr = 0.7), 
assuming for the ambient temperature, T~, the value of 300 K 
and for Tb the values of 700, 1000, and 1300 K (d = fl(Tb- Too)= 
1.33, 2.33, and 3.33). In these ranges we can well describe 
the variation of viscosity and thermal conductivity, utilizing 
Equations 5 and 6 and calculating coefficients so that the curves 
of # and 2 pass respectively through #(T®)= 184 x 10 -6 P and 
#(Tb) = 331,419, and 494 x 10- 6 p,  and through 2(T~o) = 2.64 x 
10- 2 W/InK and 2(Tb) = 5.16, 6.78, and 8.37 x 10- 2 W/mK (see 
ref. 11). In this way the maximum error obtained for/~(T) and 
2(T) is only a few per cent. 

We consider a plate of finite thickness b and length'l  and 
define a Grashof number Gq according to this length. Moreover, 
letting K = 2~ol/2oob, we can write p = dl/4/K, m = Gr~/4/(x'/l)l/4K 
and m 1 =K4/5(x'/l)l/5/Gr~/5. All results are obtained for Gr ,=  
109 and for Pr = 0.7. 

The Padr-approximant technique used to calculate the radius 
of convergence of the original MacLaurin expansion for a 
coupled laminar convection-conduction problem ~° was also 
used for the representation of the functions. Thus we find that 
the MacLaurin-expansion Equations 21, have a finite radius of 
convergence (on the order of magnitude of unity (i.e., m ~ = 0( 1 )), 
whereas the Padb representation is valid for the entire field. 

These results are shown in Figures 2 and 3, where 3~ is 
plotted versus x'/I for the range 300-1000K and for K=250.  
The asymptotic and initial expansion are evaluated with 4 and 
1l terms, respectively. 

Figure 2 shows that the initial expansion that coincides with 
Pad6 representation for x'/l< 0.1 diverges when x'/l > 0.1. 

1.00 

~w 

0.50 

initial 7~ 
expansion~j i 

J 

approx. I 

I Pr=0.7 K=250 

Grl= 109 

t I Z_~_I_J~__L_m_J__L--L--L_L_J--J--a--m---~--L~-, I .I L-J 0.00 
0.0 0.1 0.2 0.3 0.4 B.5 

×'/i 

Figure 2 Nondimensional temperature at the wall, $ w, given by 
initial expansion and Pad6 approximant 

1.00 r 

Pr=0.7 K:250 

Gr I =i09 

~,00 .--L~--t--~.J--~ , ~ ' I i--.~---I t I_J._..t--.L_~__LJ--~._~-_~L. 

0.0 0. 

×'/i 

Figure 3 Nondimensional temperature at the wall, 9w, given by 
asymptotic expansion and Pad6 approximant 

Figure 3 shows that for x'/l>O.1 the Pad6 approximant and 
the asymptotic expansion give practically the same values 
(x'/l=O.1 corresponds to a value of ml close to the radius of 
convergence). Therefore Pad6 representation is valid also when 
the MacLaurin original expansion (initial expansion) does not 
converge. Hence Pad6 approximants accurately represent both 
low and high values of the abscissa. 

In Figures 4-10, we denote the range 300-700K by - - - - ,  
the range 300-1000 K by . . . .  and the range 300-1300 K by 
- - . - - ;  we denote the approximation UP =)-P = 1 by 

We analyze the effects of the variable fluid properties and of 
the thickness of the plate on Nux, ~w, and cy, and temperature 
and velocity profiles. The Nusselt number, defined as Nu~ = 
x'qw/2oo(Tw- T~)= -x'2~Tr.w/2oo(Tw- To~), is plotted in Figure 
4 versus x'/l for K=250.  For  the evaluation of the Nusselt 
number, the assumption/~p = 2p = 1 for air works well enough 
in the ranges of temperature considered. In fact, at x/l= 1.0, 
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8.48 

Nu x 

G r l x / 4  

8,35 

f 

Pr=0.7 

Grl=109 

K = 2 5 0  

8,38 t , , , I , , , , I . . . .  I . . . .  I t , , ,  

8.8  8,2 8.4 8.6 8,8 1.8 

x'/l 

Figure 4 Comparison of Nu,/Gr~/~ for K=250,  for d=1.33,  2.33, 
and 3.33, with that of # p = 2 p = l  

Pr=O.7 K:IO00 

Grl:109 

8.48 

Nu X 

Grl/4 
X 

8.35 

8 , 3 8  . . . . .  l , , , , I , , , , I . . . .  I . . . .  

8.8 8.2 8.4 8.6 8.8 1,8 

x'/l 

Figure 5 Comparison ol Nu,]Gr',/4 for K= 1000, for d= 1.33, 2.33, 
and 3.33, with that of/zp = 2p = 1 

the difference is only about 4% in the range 300-700 K and 
about 6% in the range 300-1300 K. Considering a higher value 
of K, which corresponds to a smaller thermal resistance of the 
solid, does not modify these differences substantially. 

In Figure 5 the curves of Nux/Gr~/4 are based on K = 1000. 
The difference is about 4.5% in the range 300-700 K and about 
6.5% in the range 300-1300 K. In this case the curves are flatter 
than those in Figure 4, because for high values of K the largest 
part of the variation in wall temperature is confined to a small 
region near the leading edge of the plate. Thus the wall-fluid 
interface can be considered almost completely isothermal. 

The dimensionless wall temperature ~9~ is plotted versus x'/ l  
in Figure 6 for K = 250 and K = 1000. Comparison of the curves 
of 3w, calculated with the assumption/~p = 2p = 1, to those in 
the range 300-1300 K shows that the dimensionless temperature 
at the wall is slightly dependent on the variation of #, 2, and 
p with temperature. We found empirically for air that, in the 
ranges of temperature considered, we can obtain N u J G r  1/4 
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from the constant-property solution by calculating # and 2 at 
the reference temperature T,= Tw-0.15(Tw-To~). The results 
obtained for the range 300-1000 K are represented in Figure 7 
by curve ( * ). Naturally, the most appropriate reference temper- 
ature is different for different quantities of interest (cl, boundary 
layer thickness, flow rate). 

The friction coefficient c I, defined as zw/p o~ (v o~/x')2, is plotted 
in Figure 8 for d = 1.33 and d = 3.33. The difference with respect 
to the curves obtained by using the assumption / t p = 2 p = l  
(solid curves) is about 8% for d=1.33 and about 14% for 
d=3.33. 

Pad6-approximant techniques may also be used for deter- 
mining temperature and velocity profiles. In fact, if we set 
~ N + M  m i h ts  ~ x~N A m i / '~M i i=o 1 i~ J=z~i=o ~ 1/~i=o Biml,  the Pad6 coefficients A i 
and Bi would depend on s. By computing these coefficients for 
several values of s, we can draw temperature and velocity 
profiles for each value of m~, that is, for each value of x'/1, as 
m 1 : K4/5 (x'/l) 1/S/Gr]/5. 

1.00 

W 

0.75 

K=IO00 

K = 2 5 0  

Pr=0.7 Grl:109 

8,58 . . . .  I . . . .  , . . . .  , . . . .  , . . . .  
0.0 e.2 0.4 8.6 0,8 1,0 

Figure 6 Comparison of ~9 W for K=  250 and K=  1000, for d =  3.33, 
with that of/~p =2p = 1 

0.48 

Pr=0.7 K=250 

NUx t G r l = 1 0 9  

Gr~/4 
X 

8 .a5  

8 . 3 8  , , , i I * ~ i , 1 , ~ , , I , . , ~ I , ~  I I  

8.8  0.2 8.4 8.6 8.8 1.8 

x'/l 
Figure 7 Comparison of Nux/Gr~/4 ( . . . .  ) with those obtained 
by the reference temperature method, ( ~ )  curve, and by the 
approximation #p = 2p = 1 
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0.80 

cf d 

G r 3 / 4  
X 

0.G0 

Pr=0.7 K=250 Grl=109 

.... 

. 3 3  

/ffd:1.33 

0.0 0.2 0.4 0,6 0.8 1.0 

x'/1 

Figure 8 Comparison of Gd/Gr~/4 for d=1 .33  and d=3 .33  with 
that of/~p = Ap = 1 

i0 

Pr=0.7 K = 2 5 0  

Grl=lO 9 

x'/l=0.Ol / 

/ x'/i=0.5 

0 1 va 

Figure 9 Plot of nondimensional temperature ~ versus s = ~/(px) 'Is 
for d =  3.33 

Figures 9 and 10 present dimensionless temperature and 
velocity profiles (s=q/(px) 1/5, the similarity variable for the 
initial expansion) for K=250  and Tb= 1300K. Figures 9 and 
10 show that the approximation ;~p=2p= 1 is acceptable for 
the temperature ranges considered. 

We summarize the preceding results in Table 1 by presenting 
some significant quantities obtained from the isothermal 
solution. All of the results apply to the case of air and are based 
on the assumptions that T®=300K, Tb=700, 1000, and 
1300 K, and Pr = 0.7. For different gases and for different ranges 
of temperature, the values of the coefficients al and bx, 
appearing in the dimensionless products #p and 2p (Equations 

10 

Pr=O.7 K=250 

G r l = l O 9  d = 3 . 3 3  s 

x ' / i = 0 . 3  

0 10 
1.1 

Figure 10 Plot of nondimensional velocity component u versus 
s = ~/(p×) '/~ for d = 3.33 

0 . 4 5  

al=-0.4 

N% ~ a I =0 

Gr I/4 al=O. 4 

- -  . 4  

Pc  0 7 
0 2 5 ±  

Figure 11 Plot of Nux/Gr] j ' for the isothermal solution versus b, for 
a l = - 0 . 4 ,  O, and 0.4 (Pr=O.7) 

7a and 8a) will be different. To analyze the influence of al and 
bl on the thermo-fluid-dynamic field, we plotted in Figures 11 
and 12 the curves of Nux/Gr~/4 and (1 +d)c/Gr~/4 versus b 1 
for several values of a~ for isothermal boundary conditions, 
assuming that Pr=0.7. Both nondimensional groups vary 
almost linearly with a~ and bl in the ranges considered. 

Conclusions 

We analyzed the variable-property effects in laminar convection 
along a vertical flat plate of nonzero thickness. In order to 
study these effects, we assumed that #(T) and 2(T) can be 
represented by functions of the form X7=1 ~i T~- We further 
assumed that n = 2 for air in the temperature range 300-1300 K, 
which proved to be sufficient. 

Table  1 Quantities obtained from the isothermal solution for T= = 300 K 

a 1 b, fo ~9~ Nux/Gr~/4 (1 + d)c 

# p = A p =  1 0 0 0.960 - 0 . 3 5 3  0.353 0.960 
T 0 = 700 K - 0.229 - 0.177 1.120 - 0.408 0.336 0.864 
T o = 1000 K - 0.316 - 0.228 1.206 - 0.430 0.332 0.825 
To= 1300 K - 0 . 3 8 0  - 0 . 2 6 7  1.283 - 0 . 4 4 9  0.329 0.796 
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Figure 12 Plot of (1 +d)c,/G~/4 for the isothermal solution versus 
b 1 for a I = - 0 . 4 ,  0, and 0.4 (Pr=0 .7 )  

The problem, which does not  allow the use of similarity 
solutions, was solved by means of two expansions--ini t ial  
and asymptot ic--extending a method previously used by the 
authors?  ° In fact, in the present study we showed that the 
Pad6-approximants technique can be used not only for calcu- 
lating the radius of convergence of the initial expansion but 
also for representing the unknowns of the problem in the entire 
thermo-fluid-dynamic field. 

The results show that, for air in the temperature ranges 
considered, the approximation #p = 2p = 1 works well enough, 
but not all quantities of interest can be calculated with the same 
accuracy; for example, the error was greater than 10% for the 
friction coefficient but less than 10% for the Nusselt number. 

These results do not hold when the dependence of p and 2 
on T is stronger than that shown for air in the ranges considered. 
In fact, the analysis proved that c I and Nu depend almost 

Variable-property effects in free convection.- A. Pozzi and M. Lupo 

linearly on the coefficients al and b 1 that represent the variation 
law of/~(T) and 2(T). 
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